Эволюция, виды и свойства автоэмалей. Нитро, алкид, акрил, краски на водной основе

Материалы

История развития автомобильных эмалей берет начало с тех далеких времен, когда кузова автомобилей ничем не отличались от каретных и красились масляными красками, десятки слоев которых сохли на кузовах в течение нескольких недель. С тех пор автомобильные краски проделали большой путь и сегодня нам предлагают огромный выбор продукции в красивых упаковках с яркими названиями. Попробуем разобраться, какие существуют виды автомобильных эмалей, чем одни краски отличаются от других, а заодно и освежим в памяти основные вехи эволюции автоэмалей.

«Цвет автомобиля может быть любым, при условии, что этот цвет — черный». На первый взгляд может показаться, что это очередная из странностей своенравного Генри Форда. Но нет, «автомобильный король» вовсе не был ненавистником других цветов — просто в те времена единственным быстросохнущим материалом, который годился для конвейерной окраски транспортных средств был черный натуральный японский лак. Ситуация в корне изменилась с изобретением красок на основе нитроцеллюлозы.

Нитроэмали. От пороха к краскам

Более двухсот лет тому назад, в 1800 году, французский экономист и политический деятель Пьер Дюпон с двумя сыновьями и их семьями иммигрировал в Америку. Оказавшись там, Дюпоны решили открыть пороховой завод. Заниматься этим должен был один из сыновей — Элевтер Дюпон, так как с порохом он был знаком не понаслышке: во Франции он работал на государственной пороховой фабрике под руководством великого Антуана Лавуазье.

Сказано — сделано. В 1802 году в штате Делавэр, рядом с городом Уилмингтон, начались работы по строительству новой пороховой фабрики, вскоре после чего по стране начали свое шествие ящики с надписью «DuPont. Explosives» (взрывчатка).

DuPont. Explosives

Долгое время Дюпоны занимались только порохом, но на рубеже XX века они решили заняться производством и других товаров. Для этого они построили большую лабораторию и наняли несколько десятков ученых-химиков. Так началась эра революционных открытий, среди которых: первая синтетическая резина (неопрен), первое искусственное волокно (нейлон), целлофан, тефлон, лайкра, кевлар и множество других. Имя DuPont гремело на весь мир.

С историей этих открытий почти совпадает и история развития автомобильных красок. В 1923 году при обработке целлюлозных волокон химики получили первую в мире нитрокраску, совершившую настоящий технологических переворот в автомобильной индустрии. В отличие от масляных красок, которые наносились кистями и сохли черепашьими темпами, нитрокраски можно было наносить с помощью пневматических распылителей, а их высыхание было практически моментальным. Все это привело к гегемонии нитроэмалей в автомобильном мире.

Но были у этих красок и недостатки. Из-за слабого глянца покрытие требовало частой полировки (в двадцатые годы для этого использовались льняные тряпки и полировальные пасты). Да и сам процесс окраски был длительным и трудоемким. Из-за низкого сухого остатка пленка нитроэмали была слишком тонкой и хрупкой, поэтому для получения долговечного покрытия требовалось наносить от 5 до 11 слоев эмали.

К слову, именно так во времена Союза красили правительственные «Чайки» и «Зилы». Покрытия этих «членовозов» насчитывали до 12 слоев! Причем в процессе окраски несение каждого последующего слоя эмали чередовалось с тщательной полировкой предыдущего, а последний слой обязательно обрабатывался восковыми полиролями.

Что и говорить, выкрашенные таким способом автомобили выглядели великолепно. На их поверхности совершенно отсутствовала шагрень, ЛКП давало исключительно красивые, четкие блики и отражения. В дальнейшем, правда, все это дело приходилось почти постоянно подкрашивать и полировать — благо было кому…

По такой же технологии окрашивались сравнительно старые модели Роллс-Ройсов, Кадиллаков. Вот так, например, выглядел Cadillac 60 Special 1938 года, окрашенный нитрокраской.

Cadillac 60 Special

Поговорим о механизме пленкообразования нитрокрасок. Как вы думаете, за счет чего происходит их полимеризация? Вопрос с подвохом — никакой полимеризации в нитрокрасках на самом деле не происходит. Эти краски отверждаются, а точнее просто высыхают, исключительно за счет испарения растворителей. То есть за счет чисто физического процесса.

Полученная после высыхания пленка получается обратимой, отсюда вытекает еще один недостаток нитрокрасок: покрытие имеет низкую стойкость к агрессивным воздействиям, например к бензину и солнечным лучам.

Недостатки нитрокрасок заставили производителей ЛКМ искать способы получить новые, более стойкие и удобные в работе материалы. Хотя несмотря на все минусы нитрокрасок, стоит все же отдать им должное — для своего времени они были очень хороши.

Выпускаются нитрокраски, кстати, до сих пор (вы можете определить их по маркировке НЦ). В авторемонте их конечно же почти не используют. В основном их применяют или реставраторы раритетных машин или владельцы старой спецтехники типа тракторов и бульдозеров. И то лишь для того, чтобы как можно дешевле подготовить такую технику к прохождению техосмотра.

Нитроэмаль

Эпоха алкида

Следующий этап в истории покраски автомобилей связан с появлением алкидных эмалей. Произошло это на рубеже 30-40-х годов. В течение следущих 30 лет эти эмали были основным лакокрасочным материалом как на конвейерах автозаводов, так и в ремонтных мастерских. Производство алкидных эмалей велось всеми ведущими производителями ЛКМ, включая таких гигантов как BASF и PPG.

По сравнению с нитрокрасками, «алкиды» имеют ряд технологических преимуществ. Они обладают более высоким сухим остатком, так что наносить по пять-десять слоев эмали уже без надобности, достаточно двух-трех. Нет нужды теперь и в постоянной полировке покрытия — после полного отверждения алкидная эмаль образует необратимую пленку с высокой твердостью, блеском и стойкостью к бензину, маслам, атмосферным осадкам и солнечным лучам.

Что же представляет собой алкидная эмаль? Основой этих красок является алкидная смола — продукт взаимодействия многоатомных спиртов и многоосновных кислот (соедините фрагменты слов alcоhоl (спирт) и acid (кислота) и вы поймете происхождение термина «алкидный»).

Самыми распространенными алкидными смолами являются глифталевые смолы (продукт взаимодействия глицерина (трехатомного спирта), фталевого ангидрида и растительного масла) и пентафталевые смолы (пентаэритрит (четырехатомный спирт) плюс тот же фталевый ангидрид). На основе этих смол российские производители ЛКМ выпускают лаки и эмали с маркировкой ГФ и ПФ. Вы могли встречать банки с такой маркировкой в хозяйственных или строительных магазинах. Это — классические алкидные материалы.

Алкидная эмаль ПФ-115

Только не путайте пожалуйста строительные и бытовые алкидные эмали с теми, что предназначены для авторемонта. В качестве примера авторемонтных «алкидов» можно привести эмали небезызвестной финской фирмы Sadolin. Из «наших» можно вспомнить эмаль «Vika-алкид» (Vika-60) от компании «Русские краски».

Vika-алкид

Отверждение алкидных эмалей происходит в естественных условиях. В этом процессе принимает активное участие кислород воздуха (поэтому такие эмали еще часто называют «эмалями воздушной сушки»). Только в отличие от нитрокрасок, здесь кроме физической сушки (испарение растворителя) параллельно происходит еще один процесс: химическая реакция превращения молекул связующего в полимер.

Чтобы запустить второй, химический процесс, обязательно необходимо взаимодействие двух реакционноспособных компонентов. Один из этих компонентов находится в банке с краской — это раствор алкидной смолы, модифицированный растительным маслом. Растительное масло снабжает продукт «хвостами» высших жирных непредельных кислот, содержащих сопряженные двойные связи.

Второй компонент — кислород воздуха. Он взаимодействует с указанными двойными связями, в результате чего появляются радикалы, «запускающие» реакцию «сшивания». При этом наличие у каждой молекулы алкидного компонента нескольких двойных связей приводит к росту и разветвлению цепи и формированию сетчатых структур, составляющих основу прочной полимерной пленки. Растворить такую пленку после ее полного отверждения невозможно, поэтому она называется необратимой.

Алкидные эмали считаются однокомпонентными (они поставляются в одной банке), но с физико-химической точки зрения их вполне можно считать двухкомпонентными, так как в их отверждении всегда участвуют два компонента: алкидная смола и кислород.

Самим механизмом отверждения алкидных эмалей обусловлен и основной их недостаток: очень долгое время отверждения. Поскольку по мере отверждения доступ кислорода внутрь слоя затрудняется, полная полимеризация алкидной эмали по всей глубине наступает в лучшем случае через несколько недель. А пленка, полученная спустя первое время покраски, является результатом лишь первичной полимеризации.

Зато в работе эти эмали неприхотливы, красить ими удобно и легко. Из-за большого содержания растворителей в процессе нанесения быстро формируется поверхностная пленка, поэтому чтобы наделать подтеков — нужно еще постараться. По этим причинам некоторые мастера еще до сих могут применять алкидные эмали в определенных случаях. Например, чтобы быстро и недорого освежить свое подержанное авто перед продажей. Получается красиво, а об остальном предстоит думать уже новому хозяину…

«Синтетика»

В 1956 году в алкидные смолы начали добавлять меламин. За меламиноалкидными эмалями в обиходе давно закрепилось название: «синтетика». Почему? Одна из версий связана с тем, что при создании алкидной части этих эмалей использовались синтетические жирные кислоты. Выпускаются меламиноалкидные эмали под маркировкой МЛ.

При отверждении этих эмалей также одновременно протекают два процесса: испарение растворителя и образование необратимой пленки. Второй процесс тоже происходит при участии двух компонентов: алкидной составляющей, модифицированной растительным маслом (либо раствора полиэфирной смолы) и меламинформальдегидной смолы. Оба этих компонента изначально находятся в одной банке, до поры до времени не реагируя между собой.

В отличие от классических алкидных эмалей в меламиноалкидных эмалях алкидный компонент содержит мало двойных связей, поэтому он (аликидный компонент) здесь практически не реагирует с кислородом. Но зато этот компонент обязательно содержит звенья с реакционноспособными гидроксильными группами ОН, и при повышении температуры они вступают в реакцию с метилольными группами меламиноалкидной смолы…

Проще говоря, при достаточном нагреве происходит реакция между двумя компонентами, в которой меламинформальдегидная смола выступает в роли отвердителя.

Как правило, для эмалей необходимая температура нагрева составляет 130°С (например, для «Vika-синтал» МЛ-1110). При таком нагреве «эмэлка» сохнет всего 30 минут.

Эмаль Vika МЛ

Из-за этой особенности меламиноалкидные эмали еще называют «эмалями горячей сушки». Преимущества такого механизма очевидны: в отличие от отверждения кислородом, здесь полимеризация проходит равномерно на всю толщину слоя. В результате формируется прочная необратимая пленка, которая по своим физическим и визуальным характеристикам мало чем уступает акрилу (о нем поговорим далее) — но лишь при условии высокотемпературной сушки в камере.

Поскольку в условиях ремонтной окраски достичь таких высоких температур как на заводе нельзя, для снижения температуры сушки этих эмалей использовались специальные ускорители сушки на изоцианатной основе. Эти своеобразные «отвердители» были хорошим подспорьем для мастеров, красивших «синтетикой».

Зачастую в гаражах красили «синтетикой» и вовсе без сушки. Естественно, про сносное качество покрытия в таком случае можно было и не мечтать, но в условиях дефицита, когда разжиться «МЛ-кой» было задачей непростой, многие были довольны и этим. Да и кроме машины, можно было найти, что ею покрасить. Например катер, дачу, окна, перила…

Эпоха алкидных эмалей и их модификаций продолжалась до середины 70-х годов. Как ни крути, эти материалы, с их долгим временем высыхания и необходимостью горячей сушки, тоже были далеки от идеала. И прогресс пошел дальше…

Акриловая революция

С акриловыми ЛКМ наши маляры впервые познакомились в начале девяностых, хотя в других странах акрил на тот момент использовался наверное уже лет 30.

Попробуем разобраться, чем же так революционен акрил. Для начала взглянем на тару, в которой продаются эти ЛКМ.

Vika-акрил

В отличие от эмалей, рассмотренных выше, здесь мы видим перед собой уже не одну, а две банки: в одной — основа, в другой — отвердитель.

Компоненты акриловых ЛКМ, в отличие от меламиноалкидных, хранить в одной емкости не получится, поскольку они тут же вступят в реакцию. Поэтому эти продукты поставляются в двух упаковках, содержимое которых смешивается непосредственно перед применением. Это — двухкомпонентные материалы (2K).

Допустим, мы смешали компоненты и нанесли акриловую эмаль или лак. Чтобы понять, как происходит отверждение, нам нужно познакомиться поближе с каждым из компонентов.

Первый компонент содержит раствор акрилового сополимера. Это высокомолекулярное вещество, продукт совместной полимеризации акриловых мономеров — акриловой и метакриловой кислот и их сложных эфиров. Для нас сейчас важно понимать, что этот сополимер содержит в своем составе звенья с гидроксильными группами ОН. Запомнили.

Теперь о втором компоненте — отвердителе. В его составе есть полиизоцианат, содержащий изоцианатные группы —N=C=O. Это высоко реакционноспособные соединения, они легко вступают в реакцию с гидроксильными группами ОH. Этот процесс и лежит в основе отверждения акриловых материалов: когда раствор сополимера и отвердитель смешивают, гидроксильная и изоцианатная группа вступают в реакцию по следующей схеме:

Полимеризация двухкомпонентных эмалей

Из схемы мы видим, что в результате реакции формируется уретановая связь (конструкция справа от стрелочки). А благодаря тому, что изоцианатные группы имеют вид трехлучевых звездочек (условно), полимер, опять же, получается «пространственно-сшитым».

Изоцианатные группы можно условно изобразить в виде трехлучевых звездочек

Таким образом при отверждении акриловой пленки образуется полиуретан (поэтому такие эмали еще называют полиуретановыми или акрил-уретановыми). Именно полиуретан обеспечивает покрытию те великолепные визуальные и потребительские свойства, которыми славятся акриловые материалы.

Полимеризация акриловых эмалей

В описанном механизме и заключается главное отличие акриловых ЛКМ от эмалей предыдущих поколений. Можно сказать, что теперь отверждение ЛКМ превратилось в контролируемую химическую реакцию, благодаря чему маляры перестали зависеть от множества случайных факторов.

Важнейшим преимуществом такого метода на практике стало значительное сокращение времени полного отверждения ЛКМ. Так, при температуре воздуха 20 °С и нормальной влажности, все необратимые изменения в акриловом покрытии заканчиваются за 16-18 часов, а в течение еще нескольких суток ЛКП приобретает максимальную твердость. При температуре 60 °С покрытие полностью полимеризуется уже за 40-60 минут, после чего автомобиль будет полностью готов к полировке.

Двухкомпонентные акрил-уретановые эмали с физико-химическим механизмом отверждения — шаг вперед от нитрокрасок и алкида. Эти материалы позволяют получить лучшее качество покрытия и упростить технологический цикл

Готовая пленка акриловой эмали обладает высокой твердостью (близкой к твердости стекла), стойким блеском, великолепными эластичностью и износостойкостью. Акрилы устойчивы к воздействию кислот, щелочей и растворителей, обладают отличной адгезией к самым разнообразным поверхностям, стойко переносят воздействие солнечных лучей и атмосферных осадков.

Акриловая автокраска

Появление акриловых ЛКМ открыло новую эру в кузовном ремонте, позволив даже в гаражных условиях создавать покрытие, сопоставимое по качеству с заводским. За это всем и полюбился акрил.

Красота, да и только. «Металлики» и «перламутры»

Следующий шаг эволюции ЛКМ связан с появлением «эффектных» покрытий.

Еще в эпоху алкида разработчикам ЛКМ пришла идея добавлять в эмаль крохотные частички алюминиевой пудры, которые, как микро-зеркала, отражали бы падающий на них свет и придавали покрытию искрящийся, «металлический» эффект.

Но широкой популярности первые «металлики» не получили. Это были очень недолговечные покрытия, поскольку добавленные в алкидную эмаль алюминиевые чешуйки становились причиной быстрого выцветания и помутнения эмали.

Да и эффектные возможности металликов первого поколения оставляли желать лучшего. Так как это была однослойная (одностадийная) система, невозможно было добиться каких-то впечатляющих визуальных эффектов. Такие «металлики» можно встретить например на старых велосипедных рамах. Разглядеть там металлические включения можно разве что под лупой.

И тогда производители ЛКМ пошли другим путем: создали двухслойную систему «базовая эмаль + прозрачный лак».

Двухслойное покрытие

Базовые эмали характеризуются тем, что содержат много растворителя и быстро сохнут, но сами по себе, без лака, они смотрятся достаточно убого, да и стойкость к внешним воздействиям у них скверная. Но стоит нанести лак, как тут же происходит чудесная метаморфоза: покрытие «оживает» и становится сказочно красивым, появляется насыщенность и глубина цвета.

Металлик

Двухслойные покрытия оказались не только красивее, но и долговечнее, прочнее. Цветной слой ведь находится под прочным лаковым панцирем, который надежно защищает покрытие от агрессивных внешних воздействий, особенно от солнечного света (безжалостного разрушителя полимеров).

С химической точки зрения прозрачные лаки похожи на вышеописанные акриловые ЛКМ, с очевидным отличием — отсутствием цветовых пигментов. Лаки могут быть не только глянцевыми, но и матовыми. А есть даже с регулируемым блеском.

Акриловый лак

Что же до базовых эмалей, то их могут производить по-разному. Распространенным вариантом является комбинация полиэфира, ацетобутирата целлюлозы (напоминает НЦ, только устойчив к ультрафиолету в отличие от нитроцелюлозы) и меламинформальдегидной смолы (напоминает МЛ-ку).

Поначалу в базовые эмали добавляли только алюминий, но в конце 80-х годов в качестве эффектных пигментов стали применять частички обработанной слюды. Так появились краски с эффектом «перламутр» — похожие на «металлик», но с более нежным, спокойным блеском. В отличие от плоских частиц алюминия, отражающих солнечный свет под определенным углом, «перламутровые» частички рассеивают падающий свет, что и дает эффект благородного, «матового» блеска.

Перламутр

Совершенствование эффектных возможностей ЛКП продолжается постоянно. Если раньше предметом роскоши были металлики с модными названиями «мокрый асфальт» или «брызги шампанского», то сегодня на рынке представлены и трехслойные «перламутры», и «ксираллики», и «хамелеоны». А что будет дальше — вообще неизвестно.

Борьба за экологию. Эмали на водной основе

Любая автомобильная краска состоит из трех основных компонентов: пигмента, смолы и растворителя. Последний, как известно, является веществом токсичным.

Со второй половины 80-х годов борьба за экологию затронула лакокрасочную индустрию, в результате чего химики стали искать способы сокращения вредных выбросов при покраске и производстве ЛКМ.

Добиться этого можно было двумя способами. Первый — увеличить в ЛКМ процентное содержание сухого остатка. Так родились материалы HS (high solid), в которых содержание сухого остатка составляет 55—65%, а затем и VHS/UHS (very high solid и ultra high solid), где этот процент достигает восьмидесяти.

Появление высоконаполненных материалов было продиктовано не только экологическими, но и практическими соображениями. HS-материалы обладают большей вязкостью, поэтому для достижения рекомендованной толщины покрытия их можно наносить в полтора слоя вместо двух (как на MS), а расход материала при этом сокращается на 30%.

Второй способ, к которому пришли химики в попытках сделать ЛКМ еще более экологичными: заменить органические растворители водой.

Вода

В первую очередь «под воду» начали переделывать базовые эмали, так как в их составе содержится больше всего растворителей. Сделать это оказалось не так просто. Пришлось переделывать и смолы, и добавки, и пигменты. Почему? Потому что вода, в отличие от органических растворителей, имеет абсолютно другие свойства. Например, растворять смолу ЛКМ она не может (такой раствор выйдет мутным, а не прозрачным).

По этой причине при изготовлении ЛКМ на водной основе смолу превращают в эмульсию. Такая эмульсия представляет собой дисперсии мельчайших частиц смолы в воде. Только так вода, выступая в роли дисперсионной среды, будет успешно понижать вязкость ЛКМ.

Примеры эмульсий постоянно окружают нас в быту. Тот же майонез, кетчуп или молоко. На примере этих продуктов питания можно наглядно продемонстрировать некоторые свойства водно-дисперсионных ЛКМ. Что произойдет, если взять, к примеру, майонез, и сначала заморозить его, а потом разморозить? Продукт расслоится на фракции, после чего перемешать его в однородную эмульсию уже не получится.

Похожим образом ведут себя при заморозке и водные ЛКМ. После размораживания у них меняется цвет, материал становится мутным вместо прозрачного. Также может измениться консистенция (появляются комочки).

Отсюда главное требование к «водным» материалам: их температура ни в коем случае не должна опускаться ниже +5 °С. Чтобы это обеспечить в наших погодных условиях, для хранения этих материалов необходимы отапливаемые склады, а для перевозки — теплые фуры.

ONYX HD — попытка концерна BASF решить проблему морозоустойчивости водорастворимых материалов. В составе цветовых компонентов ONYX HD нет воды, поэтому они не боятся мороза и не меняют своих свойств после оттаивания. Остальные компоненты системы — биндер и растворитель — во избежание расслоения после заморозки поставляются в достаточно больших канистрах. Такие защитить от холода легче, чем мелкие баночки цветовых компонентов.

Краски на водной основе уже вовсю используются как на конвейерах, так и в автосервисах. И не только краски, а и лаки, грунты, антигравийные покрытия.

В работе водные ЛКМ, в частности базовые покрытия, зарекомендовали себя превосходно: они легко наносятся, обладают отличной укрывистостью, в отличие от органорастворимых баз, практически не дают «яблочности» и полос.

Разработчики водных ЛКМ потратили немало усилий для сохранения их технологической преемственности, поэтому при переходе на воду не приходится кардинально ломать привычные технологии или использовать принципиально другой инструментарий. Хотя определенные изменения, конечно, потребуются.

Вот такой путь проделали автомобильные краски менее, чем за сто лет своей эволюции. От обратимой нитроцеллюлозной пленки и отверждаемого кислородом алкида, до прочной полиуретановой сетки акрила, фантастических эффектных покрытий и экологичных водорастворимых материалов.

Но производители ЛКМ останавливаться на этом не собираются. Что они смогут предложить далее? Поживем — увидим.

Забытый Автомаляр

Несколько лет проработал в области кузовного ремонта. Затем заинтересовался созданием веб-сайтов и запустил проект Artmalyar.ru, на страницах которого делюсь накопленным опытом в кузовном деле.

Оцените автора
( 43 оценки, среднее 4.86 из 5 )
Искусство покраски автомобиля
Добавить комментарий

  1. андрей

    Добрый день, помогите идентефицировать состав краски Roberlo Negromate (собераюс использовать для авто дисков) по описанию она синтетика, а вот ее собрат Roberlo Aluminio ruedas по описанию нитросинеттичская,,, я запутлся у вас в статье синтетика и нитро краска это разные понятия,,,,,,,

    Ответить
  2. Александр

    Очень хорошая статья! Всё доступно и понятно объяснено. Спасибо!
    Остался вопрос: чем отличаются акриловые эмали от полиуретановых?

    Ответить
  3. Фархад

    Доброго вечера! ОТЛИЧНО! Какая исчерпывающая информация про ЛКМ!
    А Вы могли бы рассказать про водн. дисп. краски (для интерьера и фасада)

    Ответить
  4. Олег

    Здравствуйте! С удовольствием читаю ваши статьи. Хотел бы уточнить. В днище авто заделал дырку эпоксидным клеем со стекловолокном. По верху хочу нанести мастику каучуково-битумную. Нужна ли прослойка и какая? Спасибо.

    Ответить