Теория коррозии металлов. Почему ржавеют автомобили?

Антикоррозионная защита

Коррозия металлов, как известно, приносит много бед. Уж не вам ли, уважаемые автовладельцы, объяснять, чем она грозит: дай ей волю, так от машины одни покрышки останутся. Поэтому, чем раньше начнется борьба с этим бедствием, тем дольше проживет автомобильный кузов.

Чтобы быть успешными в борьбе с коррозией, необходимо выяснить, что же это за «зверь» и понять причины ее возникновения.

Есть ли надежда?

Ущерб, наносимый человечеству коррозией, колоссален. По разным данным коррозия «съедает» от 10 до 25% мировой добычи железа. Превращаясь в бурый порошок, оно безвозвратно рассеивается по белу свету, в результате чего не только мы, но и наши потомки остаемся без этого ценнейшего материала.

Но беда не только в том, что теряется металл как таковой, нет — разрушаются мосты, машины, крыши, памятники архитектуры. Коррозия не щадит ничего.

Неизлечимо больна та же Эйфелева башня — символ Парижа. Изготовленная из обычной стали, она неизбежно ржавеет и разрушается. Башню приходится красить каждые 7 лет, отчего ее масса каждый раз увеличивается на 60-70 тонн.

Эйфелева башня

К сожалению, полностью предотвратить коррозию металлов невозможно. Ну, разве что полностью изолировать металл от окружающей среды, например поместить в вакуум. 🙂 Но какой смысл от таких «консервированных» деталей? Металл должен работать. Поэтому единственным способом защиты от коррозии является поиск путей ее замедления.

В незапамятные времена для этого применяли жир, масла, позднее начали покрывать железо другими металлами. Прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V в. до н.э.) и римского ученого Плиния-старшего уже есть упоминания о применении олова для защиты железа от коррозии.

Интересный случай произошел в 1965 году на Международном симпозиуме по борьбе с коррозией. Некий индийский ученый рассказал об обществе по борьбе с коррозией, которое существует около 1600 лет и членом которого он является. Так вот, полторы тысячи лет назад это общество принимало участие в постройке храмов Солнца на побережье у Конарака. И несмотря на то, что эти храмы некоторое время были затоплены морем, железные балки прекрасно сохранились. Так что и в те далекие времена люди знали толк в борьбе с коррозией. Может быть, не все так безнадежно?

Что такое коррозия?

Слово «коррозия» происходит от латинского «corrodo – грызу». Встречаются ссылки и на позднелатинское «corrosio – разъедание». Но так или иначе:

Коррозия – это процесс разрушения металла в результате химического и электрохимического взаимодействия с окружающей средой.

Хотя коррозию чаще всего связывают с металлами, ей также подвергаются бетон, камень, керамика, дерево, пластмассы. Применительно к полимерным материалам, правда, чаще используется термин деструкция или старение.

Коррозия и ржавчина — не одно и то же

В определении коррозии абзацем выше не зря выделено слово «процесс». Дело в том, коррозию частенько приравнивают к термину «ржавчина». Однако это не синонимы. Коррозия — это именно процесс, в то время как ржавчина — один из результатов этого процесса.

Также стоит отметить, что ржавчина — продукт коррозии исключительно железа и его сплавов (таких как сталь или чугун). Поэтому, когда говорим «ржавеет сталь», то подразумеваем, что ржавеет железо в ее составе.

Ржавчина

Если ржавчина относится только к железу, значит другие металлы не ржавеют? Не ржавеют, но это не значит, что они не корродируют. Просто продукты коррозии у них другие.

Например, медь, корродируя, покрывается красивым по цвету зеленоватым налетом (патиной). Серебро на воздухе тускнеет — это на его поверхности образуется налет сульфида, чья тонкая пленка придает металлу характерную розоватую окраску.

Патина
Патина — продукт коррозии меди и ее сплавов

Механизм протекания коррозионных процессов

Разнообразие условий и сред, в которых протекают коррозионные процессы, очень широко, поэтому сложно дать единую классификацию встречающихся случаев коррозии. Но, несмотря на это, все коррозионные процессы имеют не только общий результат — разрушение металла, но и единую химическую сущность — окисление.

Упрощенно окисление можно назвать процессом обмена веществ электронами. Когда одно вещество окисляется (отдает электроны), другое, наоборот, восстанавливается (получает электроны).

Например, в реакции…
zn+cl

… атом цинка теряет два электрона (окисляется), а молекула хлора присоединяет их (восстанавливается).

Частицы, которые отдают электроны и окисляются, называются восстановителями, а частицы, которые принимают электроны и восстанавливаются, называются окислителями. Два этих процесса (окисление и восстановление) взаимосвязаны и всегда протекают одновременно.

Окисление

Такие вот реакции, которые в химии называются окислительно-восстановительными, лежат в основе любого коррозионного процесса.

Склонность к окислению у разных металлов неодинакова. Чтобы понять, у каких она больше, а у каких меньше, вспомним школьный курс химии. Было там такое понятие как электрохимический ряд напряжений (активности) металлов, в котором все металлы расположены слева направо в порядке повышения «благородности».

Электрохимический ряд напряжений металлов

Так вот, металлы, расположенные в ряду левее, более склонны к отдаче электронов (а значит и к окислению), чем металлы, стоящие правее. Например, железо (Fe) больше подвержено окислению, чем более благородная медь (Cu). Отдельные металлы (например, золото), могут отдавать электроны только при определенных экстремальных условиях.

К ряду активности вернемся немного позже, а сейчас поговорим об основных видах коррозии.

Виды коррозии

Как уже говорилось, критериев классификация коррозионных процессов существует множество. Так, различают коррозию по виду распространения (сплошная, местная), по типу коррозионной среды (газовая, атмосферная, жидкостная, почвенная), по характеру механических воздействий (коррозионное растрескивание, явление Фреттинга, кавитационная коррозия) и так далее.

Но основным способом классификации коррозии, позволяющим наиболее полно объяснить все тонкости этого процесса, является классификация по механизму протекания.

По этому критерию различают два вида коррозии:

  • химическую
  • электрохимическую

Химическая коррозия

Химическая коррозия отличается от электрохимической тем, что протекает в средах, не проводящих электрический ток. Поэтому при такой коррозии разрушение металла не сопровождается возникновением электрического тока в системе. Это обычное окислительно-восстановительное взаимодействие металла с окружающей средой.

Наиболее типичным примером химической коррозии является газовая коррозия. Газовую коррозию еще называют высокотемпературной, поскольку обычно она протекает при повышенных температурах, когда возможность конденсации влаги на поверхности металла полностью исключена. К такому виду коррозии можно отнести, например, коррозию элементов электронагревателей или сопел ракетных двигателей.

Коррозия сопел ракетных двигателей

Скорость химической коррозии зависит от температуры — при ее повышении коррозия ускоряется. Из-за этого, например, в процессе производства металлического проката, во все стороны от раскаленной массы разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины.

Окалина — типичный продукт химической коррозии, — оксид, возникающий в результате взаимодействия раскаленного металла с кислородом воздуха.

Окалина

Помимо кислорода и другие газы могут обладать сильными агрессивными свойствами по отношению к металлам. К таким газам относятся диоксид серы, фтор, хлор, сероводород. Так, например, алюминий и его сплавы, а также стали с высоким содержанием хрома (нержавеющие стали) устойчивы в атмосфере, которая содержит в качестве основного агрессивного агента кислород. Но картина кардинально меняется, если в атмосфере присутствует хлор.

В документации к некоторым антикоррозионным препаратам химическую коррозию иногда называют «сухой», а электрохимическую — «мокрой». Однако химическая коррозия может протекать и в жидкостях. Только в отличие от электрохимической коррозии эти жидкости — неэлектролиты (т.е. не проводящие электрический ток, например спирт, бензол, бензин, керосин).

Примером такой коррозии является коррозия железных деталей двигателя автомобиля. Присутствующая в бензине в качестве примесей сера взаимодействует с поверхностью детали, образуя сульфид железа. Сульфид железа очень хрупок и легко отслаивается, освобождая свежую поверхность для дальнейшего взаимодействия с серой. И так, слой за слоем, деталь постепенно разрушается.

Электрохимическая коррозия

Если химическая коррозия представляет собой не что иное, как простое окисление металла, то электрохимическая — это разрушение за счет гальванических процессов.

В отличие от химической, электрохимическая коррозия протекает в средах с хорошей электропроводностью и сопровождается возникновением тока. Для «запуска» электрохимической коррозии необходимы два условия: гальваническая пара и электролит.

В роли электролита выступает влага на поверхности металла (конденсат, дождевая вода и т.д.). Что такое гальваническая пара? Чтобы понять это, вернемся к ряду активности металлов.

Электрохимический ряд активности металлов

Смотрим. Cлева расположены более активные металлы, справа — менее активные.

Если в контакт вступают два металла с различной активностью, они образуют гальваническую пару, и в присутствии электролита между ними возникает поток электронов, перетекающих от анодных участков к катодным. При этом более активный металл, являющийся анодом гальванопары, начинает корродировать, в то время как менее активный коррозии не подвергается.

Гальваническая пара
Схема гальванического элемента

Для наглядности рассмотрим несколько простых примеров.

Допустим, стальной болт закреплен медной гайкой. Что будет корродировать, железо или медь? Смотрим в ряд активности. Железо более активно (стоит левее), а значит именно оно будет разрушаться в месте соединения.

Стальной болт — медная гайка (корродирует сталь)

А если гайка алюминиевая? Снова смотрим в ряд активности. Здесь картина меняется: уже алюминий (Al), как более активный металл, будет терять электроны и разрушаться.

Таким образом, контакт более активного «левого» металла с менее активным «правым» усиливает коррозию первого.

В качестве примера электрохимической коррозии можно привести случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками. Также примечателен случай, который произошел в декабре 1967 года с норвежским рудовозом «Анатина», следовавшим из Кипра в Осаку. В Тихом океане на судно налетел тайфун и трюмы заполнились соленой водой, в результате чего возникла большая гальваническая пара: медный концентрат + стальной корпус судна. Через некоторое время стальной корпус судна начал размягчаться и оно вскоре подало сигнал бедствия. К счастью, экипаж был спасен подоспевшим немецким судном, а сама «Анатина» кое-как добралась до порта.

Олово и цинк. «Опасные» и «безопасные покрытия

Возьмем еще пример. Допустим, кузовная панель покрыта оловом. Олово — очень стойкий к коррозии металл, кроме того, оно создает пассивный защитный слой, ограждая железо от взаимодействия с внешней средой. Значит, железо под слоем олова находится в целости и сохранности? Да, но только до тех пор, пока слой олова не получит повреждение.

А когда такое случается, между оловом и железом тут же возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.

Кстати, в народе до сих пор ходят легенды о якобы «вечных» луженых кузовах «Победы». Корни этой легенды таковы: ремонтируя аварийные машины, мастера использовали паяльные лампы для нагрева. И вдруг, ни с того ни с сего, из-под пламени горелки начинает «рекой» литься олово! Отсюда и пошла молва, что кузов «Победы» был полностью облужен.

На самом деле все гораздо прозаичнее. Штамповая оснастка тех лет была несовершенной, поэтому поверхности деталей получались неровными. Вдобавок тогдашние стали не годились для глубокой вытяжки, и образование морщин при штамповке стало обычным делом. Сваренный, но еще не окрашенный кузов приходилось долго готовить. Выпуклости сглаживали наждачными кругами, а вмятины заполняли оловяным припоем, особенно много которого было вблизи рамки ветрового стекла. Только и всего.

Ну, а так ли «вечен» луженый кузов, вы уже знаете: он вечен до первого хорошего удара острым камешком. А их на наших дорогах более чем достаточно.

А вот с цинком картина совсем другая. Здесь, можно сказать, мы бьем электрохимическую коррозию ее же оружием. Защищающий металл (цинк) в ряду напряжений стоит левее железа. А значит при повреждении будет разрушаться уже не сталь, а цинк. И только после того, как прокорродирует весь цинк, начнет разрушаться железо. Но, к счастью, корродирует он очень и очень медленно, сохраняя сталь на долгие годы.

а) Коррозия луженой стали: при повреждении покрытия разрушается сталь. б) Коррозия оцинкованной стали: при повреждении покрытия разрушается цинк, защищая от коррозии сталь.

Покрытия, выполненные из более активных металлов называются «безопасными«, а из менее активных — «опасными«. Безопасные покрытия, в частности оцинковка, давно и успешно применяются как способ защиты от коррозии автомобильных кузовов.

Почему именно цинк? Ведь помимо цинка в ряду активности относительно железа более активными являются еще несколько элементов. Здесь подвох вот в чем: чем дальше в ряду активности находятся друг от друга два металла, тем быстрее разрушение более активного (менее благородного). А это, соответственно, сокращает долговечность антикоррозионной защиты. Так что для автомобильных кузовов, где помимо хорошей защиты металла важно достичь и продолжительного срока действия этой защиты, оцинковка подходит как нельзя лучше. Тем более, что цинк доступен и недорог.

Кстати, а что будет, если покрыть кузов, например, золотом? Во-первых, будет ох как дорого! 🙂 Но даже если золото стало бы самым дешевым металлом, такого делать нельзя, поскольку оно окажет нашей «железке» плохую услугу.

Золото ведь стоит очень далеко от железа в ряду активности (дальше всего), и при малейшей царапине железо вскоре превратится в груду ржавчины, покрытую золотой пленкой.

Автомобильный кузов подвергается воздействию как химической, так электрохимической коррозии. Но главная роль все же отводится электрохимическим процессам.

Ведь, чего греха таить, гальванических пар в автомобильном кузове много: это и сварные швы, и контакты разнородных металлов, и посторонние включения в листовом прокате. Не хватает только электролита, чтобы «включить» эти гальванические элементы.

А электролит тоже найти легко — хотя бы влага, содержащаяся в атмосфере.

Кроме того, в реальных условиях эксплуатации оба вида коррозии усиливаются множеством других факторов. Поговорим о главных из них поподробнее.

Факторы, влияющие на коррозию автомобильного кузова

Металл: химический состав и структура

Конечно, если бы автомобильные кузова изготавливались из технически чистого железа, их коррозионная стойкость была бы безупречной. Но к сожалению, а может быть и к счастью, это невозможно. Во-первых, такое железо для автомобиля слишком дорого, во-вторых (что важнее) — недостаточно прочно.

Но не будем о высоких идеалах, а вернемся к тому, что имеем. Возьмем, к примеру, сталь марки 08КП, широко применяемую в России для штамповки кузовных деталей. При изучении под микроскопом эта сталь представляет собой следующее: мелкие зерна чистого железа перемешаны с зернами карбида железа и другими включениями.

Как вы уже догадались, подобная структура порождает множество микрогальванических элементов, и как только в системе появится электролит, коррозия потихоньку начнет свою разрушительную деятельность.

Интересно, что процесс коррозии железа ускоряется под действием серосодержащих примесей. Обычно она попадает в железо из каменного угля при доменной выплавке из руд. Кстати, в далеком прошлом для этой цели использовался не каменный, а древесный уголь, практически не содержащий серы.

В том числе и по этой причине некоторые металлические предметы древности за свою многовековую историю практически не пострадали от коррозии. Взгляните, к примеру, на эту железную колонну, которая находится во дворе минарета Кутуб-Минар в Дели.

Железная колонна в Дели

Она стоит уже 1600 (!) лет и хоть бы что. Наряду с низкой влажностью воздуха в Дели, одной из причин такой поразительной коррозионной стойкости индийского железа является, как раз-таки, низкое содержание в металле серы.

Так что в рассуждениях по типу «раньше металл был чище и кузов долго не ржавел», все же есть доля правды, и немалая.

Кстати, почему же тогда не ржавеют нержавеющие стали? А потому, что хром и никель, используемые в качестве легирующих компонентов этих сталей, стоят в электрохимическом ряду напряжений рядом с железом. Кроме того, при контакте с агрессивной средой они образуют на поверхности прочную оксидную пленку, предохраняющую сталь от дальнейшего корродирования.

Хромоникелевая сталь — наиболее типичная нержавейка, но кроме нее есть и другие марки нержавеющих сталей. Например, легкие нержавеющие сплавы могут включать алюминий или титан. Если вы были во Всероссийском выставочном центре, вы наверняка видели перед входом обелиск «Покорителям космоса». Он облицован пластинками из титанового сплава и на его блестящей поверхности нет ни единого пятнышка ржавчины.

Обелиск покорителям космоса

Заводские кузовные технологии

Толщина листовой стали, из которой изготавливаются кузовные детали современного легкового автомобиля, составляет, как правило, менее 1 мм. А в некоторых местах кузова эта толщина — и того меньше.

Особенностью процесса штамповки кузовных элементов, да и вообще, любой пластической деформации металла, является возникновение в ходе деформации нежелательных остаточных напряжений. Эти напряжения незначительны, если шпамповочное оборудование не изношено, и скорости деформирования настроены правильно.

В противном случае в кузовную панель закладывается своеобразная «часовая бомба»: порядок расположения атомов в кристаллических зернах меняется, поэтому металл в состоянии механического напряжения корродирует интенсивнее, чем в нормальном состоянии. И, что характерно, разрушение металла происходит именно на деформированных участках (изгибах, отверстиях), играющих роль анода.

Кроме того, при сварке и сборке кузова на заводе в нем образуется множество щелей, нахлестов и полостей, в которых скапливается грязь и влага. Не говоря уже о сварных швах, образующих с основным металлом все те же гальванические пары.

Влияние окружающей среды при эксплуатации

Среда, в которой эксплуатируются металлические конструкции, в том числе и автомобили, с каждым годом становится все более агрессивной. В последние десятилетия в атмосфере повысилось содержание сернистого газа, оксидов азота и углерода. А значит, автомобили омываются уже не просто водичкой, а кислотными дождями.

Коль уж зашла речь о кислотных дождях, вернемся еще раз к электрохимическому ряду напряжений. Наблюдательный читатель подметил, что в него включен также и водород. Резонный вопрос: зачем? А вот зачем: его положение показывает, какие металлы вытесняют водород из растворов кислот, а какие — нет. Например, железо расположено левее водорода, а значит вытесняет его из растворов кислот, в то время как медь, стоящая правее, на подобный подвиг уже не способна.

Отсюда следует, что кислотные дожди для железа опасны, а для чистой меди — нет. А вот о бронзе и других сплавах на основе меди этого сказать нельзя: они содержат алюминий, олово и другие металлы, находящиеся в ряду левее водорода.

Замечено и доказано, что в условиях большого города кузова живут меньше. В этой связи показательны данные Шведского института коррозии (ШИК), установившего, что:

  • в сельской местности Швеции скорость разрушения стали составляет 8 мкм в год, цинка — 0,8 мкм в год;
  • для города эти цифры составляют 30 и 5 мкм в год соответственно.

Немаловажны и климатические условия, в которых эксплуатируется автомобиль. Так, в условиях морского климата коррозия активизируется примерно в два раза.

Влажность и температура

Насколько велико влияние влажности на коррозию мы можем понять на примере ранее упомянутой железной колонны в Дели (вспомним сухость воздуха, как одну из причин ее коррозионной стойкости).

Поговаривают, что один иностранец решил раскрыть тайну этого нержавеющего железа и каким-то образом отколол небольшой кусочек от колонны. Каково же было его удивление, когда еще на корабле по пути из Индии этот кусочек покрылся ржавчиной. Оказывается, на влажном морском воздухе нержавеющее индийское железо оказалось не таким уж и нержавеющим. Кроме того, аналогичную колонну из Конарака, расположенного поблизости моря, коррозия поразила очень сильно.

Скорость коррозии при относительной влажности до 65% сравнительно невелика, но когда влажность возрастает выше указанного значения — коррозия резко ускоряется, поскольку при такой влажности на металлической поверхности образуется слой влаги. И чем дольше поверхность остается влажной, тем быстрее распространяется коррозия.

Вот почему основные очаги коррозии всегда обнаруживаются в скрытых полостях кузова: cохнут-то они гораздо медленнее открытых частей. Как результат — в них образуются застойные зоны, — настоящий рай для коррозии.

Кстати, применение химических реагентов для борьбы с гололедом коррозии тоже на руку. Вперемешку с подтаявшими снегом и льдом антигололедные соли образуют очень сильный электролит, способный проникнуть куда угодно, в том числе и в скрытые полости.

Что касается температуры, то мы уже знаем, что ее повышение активизирует коррозию. По этой причине вблизи выхлопной системы следов коррозии всегда будет больше.

Доступ воздуха

Интересная все-таки вещь эта коррозия. К примеру, не удивляйтесь, что блестящий стальной трос, с виду абсолютно не тронутый коррозией, внутри может оказаться проржавевшим. Так происходит из-за неравномерного доступа воздуха: в тех местах, где он затруднен, угроза коррозии больше. В теории коррозии это явление называется дифференциальной аэрацией.

Принцип дифференциальной аэрации: неравномерный доступ воздуха к разным участкам металлической поверхности приводит к образованию гальванического элемента. При этом участок, интенсивно снабжаемый кислородом, остается невредимым, а участок хуже снабжаемый им, корродирует.

Яркий пример: капля воды, попавшая на поверхность металла. Участок, находящийся под каплей и потому хуже снабжаемый кислородом, играет роль анода. Металл на этом участке окисляется, а роль катода выполняют края капли, более доступные влиянию кислорода. В результате на краях капли начинает осаждаться гидроксид железа — продукт взаимодействия железа, кислорода и влаги.

Атмосферная коррозия

Кстати, гидроксид железа (Fe2O3·nH2O) и является тем, что мы называем ржавчиной. Поверхность ржавчины, в отличие от патины на медной поверхности или оксидной пленки алюминия, не защищает железо от дальнейшего корродирования. Изначально ржавчина имеет структуру геля, но затем постепенно происходит ее кристаллизация.

Кристаллизация начинается внутри слоя ржавчины, при этом внешняя оболочка геля, который в сухом состоянии очень рыхлый и хрупкий, отслаивается, и воздействию подвергается следующий слой железа. И так до тех пор, пока все железо не будет уничтожено или в системе не закончится весь кислород с водой.

Ржавчина

Вспоминая принцип дифференциальной аэрации, можно представить, сколько существует возможностей для развития коррозии в скрытых, плохо проветриваемых участках кузова.

Ржавеют… все!

Выше в статье упоминался такой известный центр борьбы с коррозией, как Шведский институт коррозии (ШИК) — одна из наиболее авторитетных организаций в данной области.

Раз в несколько лет ученые института проводят интересное исследование: берут кузова хорошо потрудившихся автомобилей, вырезают из них наиболее подверженные коррозии «фрагменты» (участки порогов, колесных арок, кромок дверей и т.д.) и оценивают степень их коррозионного поражения.

Важно отметить, что среди исследуемых кузовов есть как защищенные (оцинковкой и/или антикором), так и кузова без какой либо дополнительной антикоррозионной защиты (просто окрашенные детали).

Так вот, ШИК утверждает, что наилучшей защитой автомобильного кузова является лишь сочетание «цинк плюс антикор». А вот все остальные варианты, включая «просто оцинковку» или «просто антикор», по словам ученых — плохи.

Оцинковка — не панацея

Сторонники отказа от дополнительной антикоррозионной обработки часто ссылаются на заводскую оцинковку: с ней, мол, никакая коррозия автомобилю не грозит. Но, как показали шведские ученые, это не совсем так.

Действительно, цинк может служить в качестве самостоятельной защиты, но только на ровных и плавных поверхностях, к тому же не подверженных механическим атакам. А на кромках, краях, стыках, а также местах, регулярно подвергающихся «обстрелу» песком и камнями, оцинковка перед коррозией пасует.

К тому же, далеко не у всех автомобилей кузова оцинкованы полностью. Чаще всего цинком покрыто лишь несколько панелей.

Ну и не нужно забывать, что цинк хоть и защищает сталь, но в процессе защиты неизбежно расходуется сам. Поэтому толщина цинкового «щита» со временем будет постепенно снижаться.

Так что легенды о долгожительстве оцинкованных кузовов правдивы лишь в тех случаях, когда цинк становится частью общей защиты, дополнением к регулярной дополнительной антикоррозионной обработке кузова.

Пора заканчивать, но на этом тема коррозии далеко не исчерпана. О борьбе с ней мы продолжим говорить в следующих статьях рубрики «Антикоррозионная защита».

Забытый Автомаляр

Несколько лет проработал в области кузовного ремонта. Затем заинтересовался созданием веб-сайтов и запустил проект Artmalyar.ru, на страницах которого делюсь накопленным опытом в кузовном деле.

Оцените автора
( 11 оценок, среднее 4.27 из 5 )
Искусство покраски автомобиля
Добавить комментарий

  1. Alex

    Пожалуй лучшая и наиболее сбалансированная статья о коррозии металлов из тех что я встречал в интернете! Но вопросы все таки остались. Прочитал очень внимательно, но по-моему механизм образования ржавчины так и остался не до конца разобранным.

    Допустим берем железо и медь. То есть я приклепываю медную латку медными же заклепками к днищу авто. И что происходит дальше, на электронно ионном уровне? Электроны с железа сразу побегут на медную пластинку? И даже если так и свободные электроны каким-то образом начинают убегать с железки, что происходит с самими атомами железа?

    Ответить
  2. Роман

    Отличная статья!Очень жду продолжения темы антикор защиты.К зиме весьма актуально!

    Ответить
  3. Владимир

    Отличная статья!
    У меня вопрос: а если цинк начал коррозировать от внешнего повреждения, но в последствии его изолировали (к примеру эпоксидным грунтом) от электролита (воздуха) процесс коррозии останавливается? Или процесс разрушения цинка уже неизбежен?

    Ответить
  4. Наталья

    Браво, отличная статья!!!!! первый раз пишу комментарий. Для всех понятно, доступно, грамотно и на высоком уровне, а главное без жуткого примитива.

    Ответить
  5. Серёга

    Гавно статья!Столько нахрен не нужной (мне лично) информации «мусора» и ни слова о ЗАЩИТЕ.Хотя заголовок статьи «АНТИКОРРОЗИЙНАЯ ЗАЩИТА».Только за зря время потратил.НАХРЕН МНЕ ЭТО ЗНАНИЕ.Я в металлургию не собираюсь, МНЕ АВТОМОБИЛЬ ЗАЩИТИТЬ НУЖНО от коррозии а не сей ,в этоге,безпонтовый, трёп.

    Ответить
  6. Игорь

    Очень познавательный материал, понимание сути коррозии и причин её возникновения будет плюсом для меня как начинающего автомаляра.

    Ответить
  7. Старый

    Очень познавательно в плане теории. Но нет практических советов. Придётся думать самому. Всё равно спасибо очень большое за информацию!

    Ответить
  8. АлиБек

    Элнктрохим катодная защита : Плюс от акб через резюк ~260 ОМ, на КОНТАКТ ИЗОЛИРОВАННОГО ОТ КУЗОВА брызговика-антистатика. На парковке можно -брызговик-хвост подсоеденять к металл конструкциям, либо полить пятно контакта 《хвоста》с асфальтом слабым электролитом — р-ор любой соли, сода, и т п — не актуально в сырую погоду. Любителям экспериментов последовательно с резистором можно включить микроамперметр. Если предположить что 《хвост》 коротнёт на кузов I=U/R 12,8÷260=50 mA т е заряда акб хватит оч на долго.
    С ув АлиБек

    Ответить